Winter Weather Flying

Nick Czernkovich

"Aircraft Icing"

Aircraft icing can be broken down into 2 categories:

- Induction System Icing
- Structural Icing

Structural Icing

Ground Icing

Some General Statistics

10.8 % of all weather accidents result from icing

3 leading factors:

- 51.2 % Carburetor icing
- 41.4 % In-Flight icing
- 7.7 % Ground Icing
- PIC average flight time: 1,964 hrs
- Average time on type: 306 hrs
- Percent Instrument Rated: 71 %

In-Flight Icing Statistics

- Cause of approximately 30 fatalities and 14 injuries per year in U.S.
- Result of US \$96 million per year in personal injury and damage
- Between 1978 and 1989, contributed to 298 fatalities in Canada

In 57% of icing accidents pilots had received an icing forecast

Some Pictures

5

Physical States (Phases)

- Three physical states:
 - Solid
 - Liquid
 - Vapour
- Water can exist in the atmosphere in all three phases
- Transition between phases takes place all the time, results in "Weather"
- Phase changes consume/release
 latent heat

Two Points to Remember

Ice will always melt at 0 C, but liquid water
 <u>will not</u> necessarily freeze at 0 C

Evaporation, sublimation and deposition
 need not occur at any specific temperature

Warm Cloud Process

- Definition: Entire depth of cloud is above 0 C
- Expect to find only liquid droplets
- Often forms due to:
 - Frontal lifting
 - Orographic Lifting
 - Buoyancy
 - Convergence
 - Turbulence

Warm Cloud Process: Formation of Cloud Droplets

Vapour condenses onto tiny particles called CCN

CCN are always abundant in the atmosphere Typical cloud droplet size ~10 to 20 microns

1 micron = 1/1000 mm

9

Warm Cloud Process: Cloud Droplets to Rain

- Drops grow by condensation up to 20 microns
- After 20 microns collision-coalescence dominates

Warm Cloud Process: Summary

- Clouds develop as air is lifted to saturation
- CCN become activated
- Cloud droplets grow by condensation up to about 20 microns
- After 20 microns collision-coalescence dominates
- When fall speeds of drops exceed updraft speed in cloud → Precipitation

Cold Clouds

- Definition: Some or all of the cloud is at or below 0 C
- Formed through the same process as warm clouds
- Possibility of forming ice particles
- Ice particles must form onto aerosols called Freezing Nuclei (FN)

Cold Clouds Reality of Freezing Nuclei

- Liquid drops being carried above the freezing level →
 Drops must contact a FN to freeze
- If no FN present liquid droplets form on CCN

Cold Clouds Some points...

- FN are functions of temperature
- FN become more important as T< -15C
- CCT < -15C can glaciate cloud from top down (BUT DON'T EXPECT THIS)
- Ice and Liquid can co-exist in equilibrium
- Liquid water is possible down to –40C

Inferring Icing Conditions From Precipitation Observations

- Snow (SN)
- Graupel/Snow Pellets (GS)
- Freezing Rain (FZRA)
- Le Pellets (PL)
- Freezing Drizzle (FZDZ)

Inferring Icing Conditions Snow: What you can infer

- Likelihood of icing in lowest layer reduced
- Liquid Cloud layers above the ice are unlikely
- BUT...Rimed snow suggests SLW aloft

T< 0°C

Inferring Icing Conditions Snow: What you <u>CANNOT</u> infer

Only ice exists aloft
No SLW exists aloft
Small amount of SLW exist

T< 0°C

Inferring Icing Conditions Graupel: What you can infer

- Formed when snowflakes become heavily rimed
- Significant SLW exists aloft

Inferring Icing Conditions Freezing Rain: What you can infer

- Could be formed by classical or non-classical mechanism
- Freezing rain exists from the surface up to some level
- Dangerous icing conditions likely exist

Inferring Icing Conditions Freezing Rain: What you <u>CANNOT</u> infer

 A warm layer exists aloft
 Freezing rain layer is relatively shallow

Inferring Icing Conditions Ice Pellets: What you can infer

- A layer of freezing rain or drizzle exists at some level aloft
- If a melting layer exists it is likely to be shallow
- SLW formed through collision-coalescence can also exist

Inferring Icing Conditions Ice Pellets: What you <u>CANNOT</u> infer

 A warm layer exists aloft
 Freezing rain/drizzle layer is relatively shallow

Inferring Icing Conditions Freezing Drizzle: What you can infer

- Could be formed by classical or non-classical mechanism
- Freezing drizzle exists from the surface up to some level
 Collision-coalescence more likely

Icing in Cloud: Probability

- 40 % chance of encountering icing in cloud below 0 C
- 14 % chance of encountering icing in cloud below –20 C

24

Icing in Cloud: What to Expect

- 90 % of layered clouds have vertical extents of 3000 ft or less
- 90 % of icing encounters last 50 sm or less

Mechanics of Icing

Total Air Temperature vs Static Air Temperature

TAT = SAT + Kinetic Effects

- Temperature at stagnation point will be higher than SAT due to local pressure increase
- Temperature can vary across wing surface
- One Example Point
 Icing and od Air fevien when
 temperatures Are above 0 C!
 - 1.9(Updtoprattos) airfoil

Some Pictures

28

Icing Types Summary

General Observations:

- Clear \rightarrow 0 C to -10 C
- Mixed $\rightarrow -10$ to -15 C
- Rime $\rightarrow -15$ C to -20 C
- Typically:
 - Rime Stratiform
 - Clear Cumuliform
- □ Temperature + Drop Size → Icing Type
- $\square LWC + Drop Size \rightarrow Accretion Rate$
- Airspeed also a factor (Kinetic Heating)

Dynamics of Icing Collection Efficiency of an object

Droplet SizeObject ShapeAirspeed

SLD

- Drop sizes much larger than 50 microns have been found to exist
- These are called Supercooled Large Droplets (SLD)

Dynamics of Icing Dangers of Ice Outside CAR 525-C

Large Droplets:
Ice aft of protected surface
Ridging
High LWC
Runback
Ridging

32

Performance Penalties

- Decreased Lift
- Increased Drag
- Decreased Stall Angle
- Increased Stall Speed

- Increased Vibration
- Changes in Pressure Distribution
- Early Boundary Layer Separation
- Reduced Controllability

Performance Penalties

Studies have shown

- Drag increase up to 40 % or more
- Lift decrease up to 30 % or more
- Stall speed increase of 15 to 20 %
 - (Even with a very small coating of ice)
- Propeller efficiency decrease of 19 %
- One incident during research:
 - 36 % drag increase resulting from ice on unprotected surfaces, after boots were cycled

Wing Stall Comparison

Aileron Snatch Due To Ice

Uncontrolled Roll

Balance Of Forces

Elevator Snatch Due To Ice

Lowering Flaps

Stall Recognition

WING STALL

TAIL STALL

🏶 Wing Buffet

Wing drop

High/moderate angles of attack

* Tends to happen at the low end of the speed regime Lightening of the controls

Dramatic nose drop

* Often after flap
extension

High end of the flap extension range

41

Recovery Techniques

WING STALL

TAIL STALL

* PUSH FORWARD on the yoke

Add power

Maintain directional control with rudder * PULL BACK on the yoke

* Reduce power

* Retract flaps to
previous setting

Flight Planning

Checking the Weather Remember the Physics of Icing

Climatology

- 53 % near mountainous terrain
- 14 % near large bodies of water
- 33 % other
- 95 % of accidents occur during approach, landing, holding and go-around
- Forecasting Rule #1
 - Know your terrain!

Checking the Weather Get the "BIG" Picture

Review Surface Analysis
 Low Pressure Areas (Cyclones)

- Fronts (Warm/Cold/Occluded)
- Observe winds, look for areas of lift (Fronts, Terrain, Convergence, etc..)

Review the Upper Air Charts

Checking the Weather Fronts

- Check surface and upper air stations for airflow
 - Warm Conveyor Belt
 - Cold Conveyor Belt
- Check source of airflow (warm & moist flow over cold arctic air → Good chance of Freezing Precipitation
- Max precipitation usually W/NW quadrant

Checking the Weather Fronts

• Warm Fronts \rightarrow

- **1:200**
- Icing up to +300 nm ahead of surface front
- Icing in clouds and freezing precipitation
- □ Cold Fronts \rightarrow
 - Icing ahead & behind up to +130 nm
 - FZRA/FZDZ aloft
- Occluded Fronts \rightarrow
 - In cloud either side of front
 - FZRA/FZDZ possible

Checking the Weather

Forecast Information

- Graphical Area Forecasts (GFA)
- Terminal Area Forecasts (TAF)
- AIRMETS
- SIGMETS

Observations
METARs
PIREPS

MAKE SURE EVERYTHING AGREES!

IF IT DOESN'T, UNDERSTAND WHY

Current/Forecast Icing Potential

http://adds.aviationweather.noaa.gov/

Checking the Weather What you NEED to know

- Extent of cloud coverage
- Cloud tops
- Cloud bases
- Frontal positions (current & forecast)
- Precipitation
- Freezing level

Filing the Flight Plan A Few Things to Remember

ALWAYS HAVE AN OUT FOR EVERY PHASE OF THE FLIGHT!

- Piston aircraft \rightarrow Reduced thrust margin
 - Usually cruise at 75-85% power
- Iced wing will not climb as efficiently
- Be mindful of MEA
- Penetrate fronts at a 90 degree angle
- Fly on LEEWARD side of mountain ranges

Monitoring the Weather *Don't make it your last priority!*

A change in weather may warrant the cancellation of your flight

Update Weather and Reassess your outs
 PIREPS (Icing)

- METARS (Clouds, Precipitation, Fronts)
- Forecasts (Make sure they are holding)

Canada (126.7 MHz) & US (122.0 MHz)

In-Flight Strategies If Ice is Encountered

Start working to get out

Possible Options:

- Climb
- Descend
- Continue
- Divert
- Return
- Declare an Emergency

In-Flight Strategies If Ice is Encountered

Remember:

- 90 % of icing encounters are 50 sm or less
- 9 out of 10 times a change of 3000 ft will take you out of icing conditions
 - Be mindful of MEA
 - Be cautious of cloud tops
- Use a safe airspeed to maneuver
- Keep bank angles to a minimum

Lake Effect Snow

Lake Effect Snow Ingredients

- Open body of water
- Cold arctic air flowing over relatively warm water
- Typically occurs when a polar vortex slides south
- Factors affecting amount of LES:
 - Water surface to 850 mb temperature difference (minimum 13 C)
 - Low shear (ideally < 0-30 deg sfc-700mb)</p>
 - Long Fetch

Lake Effect Snow How it Forms

Lake Effect Snow The Impact

- Zero-Zero conditions almost instantly
- Severe icing (particularly near water)
- Rapid snow accumulations (several cm/hr)
- Fairly low level phenomenon (5000-7000 ft)
- Generally quite localized

Lake Effect Snow The Impact

Lake Effect Snow Satellite Imagery

60

Lake Effect Snow Satellite Imagery

61

www.aerosafety.ca

